CQC 标志认证 试验报告

新申请	变更	监督	复审	
-----	----	----	----	--

申请编号: V2021CQC107502-805650

(任务编号)

产品名称: 剩余电流保护断路器

型 号: NM2LC-630、NM2LC-630/M、

NM2LC-630/M/S

检测机构: 浙江省机电产品质量检测所有限公司

产品名称: 剩余电流保护断路器

型 号: NM2LC-630、 NM2LC-630/M、NM2LC-630/M/S

商标: 正泰/CHINT

样品数量: 11

样品来源:企业送样

收样日期: 2021-05-18

完成日期: 2021-06-23

委托人:浙江正泰电器股份有限公司 委托人地址:浙江省乐清市北白象镇正泰 工业园区正泰路1号

生产者(制造商): 浙江正泰电器股份有限 公司

生产者(制造商)地址:浙江省乐清市北白 象镇正泰工业园区正泰路1号

生产企业:温州正泰电器科技有限公司 生产企业地址:浙江省温州经济技术开发 区滨海二道 1318 号

试验结论: 依据 GB/T 14048.2-2020 检验合格

本申请单元所覆盖的产品型号规格及相关情况说明:

NM2LC-630、NM2LC-630/M、NM2LC-630/M/S

Ue: AC400V; Ui: 1000V; Uimp: 8kV; In: 630A(315A、350A、400A、500A、630A可调); 过电流脱扣器类型: 电子式; NM2LC-630(H型): Icu: 85kA; Ics: 65kA; NM2LC-630/M、NM2LC-630/M/S(M型): Icu: 65kA; Ics: 42kA; Icw: 8kA/1s; 剩余电流脱扣器型式: 电子式; I△n: 30 mA(仅非延时型)/50mA/100mA/200mA/300mA/400mA/500mA/600mA/800mA/1000 mA(可调)/AC型; 选择性类别: B类; NM2LC-630(H型): I△m: 21.5kA; NM2LC-630/M、NM2LC-630/M/S(M型): I△m: 16.5kA; 自动重合闸时间: 20s~60s(仅延时型); 极数: 3P+N(三个保护极,带不可开断中性线,不适用于隔离用);

主检: 高云燕 签名: 言文莊, 日期: 2021-06-24

审核: 蔡益州 签名: 765 日期: 2021-06-24

签发: 杜 量 签名: 七 3 日期: 2021-06-25

浙江省机电产品质量检测所有限公司 2021年 06月 25日

备注:操作性能寿命-S图;接通分断-T图;预期波-Y图; EMC-E图;

NM2LC-630/M: I -1、IV-1、BI-1、BIV-1、F-1、K-1、R-1;

变更表见附页

试验项目汇总表

序号	检验项目	依据标准条款	检验结果
I/1	脱扣极限和特性	8.3.3.2&B.8.1.2.1	P
2	介电性能	8.3.3.3	
3	机械操作和操作性能能力	8.3.3.4&B.8.1.2.1	
4	机械耐久性验证	R.8.5	
IV/5	验证过载脱扣器	8.3.6.2&B.8.1.2.2.3	P
6	额定短时耐受电流	8.3.6.3	
7	验证温升	8.3.6.4	
8	最大短时耐受电流下的短路分断能力	8.3.6.5	
9	验证介电耐受能力	8.3.6.6	
10	验证过载脱扣器	8.3.6.7&B.8.1.2.2.3	
11	自动重合闸功能验证	R.8.8	
BI/12	动作特性	B.8.2	P
13	介电性能	B.8.3	
14	在额定电压极限值下操作试验装置	B.8.4	
15	在过电流条件下的不动作电流的极限值	B.8.5	N
16	在冲击电压引起的浪涌电流的情况下CBR抗误脱 扣的性能	B.8.6	Р
17	A型和B型CBR的附加验证	B.8.7	N
18	B型CBR 的附加验证	B.8.8	
19	按B.3.1.2.1分类的CBR在电源电压故障情况下的工作状况	B.8.9	
20	按B.3.1.2.2分类的CBR在电源电压故障情况下的工作状况	B.8.10	Р
21	自动重合闸功能验证	R.8.8	P
BIV/22	静电放电	B.8.13.1.2	P
23	射频电磁场辐射	B.8.13.1.3	
24	电快速瞬变/脉冲群(EFT/B)	B.8.13.1.4	
25	浪涌	B.8.13.1.5	
26	射频场感应的传导骚扰(共模)	B.8.13.1.6	
27	传导射频干扰(150kHz~30MHz)	B.8.13.2.2	
28	辐射射频干扰(30MHz~1000MHz)	B.8.13.2.3	
29	自动重合闸功能验证	R.8.8	
F/30	电快速瞬变/脉冲群(EFT/B)	F4.4	P
31	浪涌	F4.5	

TRF000001.51 2021-04-14

试验项目汇总表

32	
34 在规定变化率下的温度变化循环 F9 R/35 过电流条件下脱扣后的非重合闸验证 R.8.2 36 人工断开后的非重合闸验证 R.8.3 37 接地故障脱扣后自动重合闸功能验证 R.8.4 K/38 电气间隙和爬电距离 7.1.4 P 报告来源: 浙江省机电产品质量检测所 报告编号: C-06801-1C171717	
R/35 过电流条件下脱扣后的非重合闸验证 R.8.2 P 36 人工断开后的非重合闸验证 R.8.3 37 接地故障脱扣后自动重合闸功能验证 R.8.4 K/38 电气间隙和爬电距离 7.1.4 报告来源: 浙江省机电产品质量检测所 报告编号: C-06801-1C171717	
R.8.2	
37 接地故障脱扣后自动重合闸功能验证 R.8.4	
K/38 电气间隙和爬电距离 7.1.4 报告来源: 浙江省机电产品质量检测所 报告编号: C-06801-1C171717	
报告来源: 浙江省机电产品质量检测所 报告编号: C-06801-1C171717	
报告编号: C-06801-1C171717	
(以下空白)	

TRF000001.51 2021-04-14